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This report is a chronological documentation of the research progress made by Martijn 

Kolloffel throughout the Fall Semester 2003. The research focuses on the use of cumulant 

functions in queueing theory and stochastic modeling. This report is a result of a DOD 

research grant proposed by Dr. Timothy. I. Matis, with the purpose to engage undergraduate 

students from New Mexico State University in research in stochastic models. My progress 

was monitored, evaluated, and documented through the participation in the undergraduate 

research course IE 400. The investigation into the application of cumulant functions in 

stochastic modeling is a continuation of research activities in the spring semester of 2003. 

The usefulness of cumulant based analysis methods is researched by the formulation of a 

suitable model. The first goal in this semesters research endeavor is the definition of a model 

that is relevant to military applications. After the model is completely defined, we use a 

cumulant derivation procedure to find an approximation to the measure of interest. We then 

validate our solution by comparing it to a model simulation. After validation we strive to 

expand the scale of the initial model, which can show the mathematical tractability of this 

procedure for large-scale systems. We also intend to expand the model by using phase type 

distributions, which allows us to model most probability distributions. 

During the summer of 2003 some ideas for formulating a model suitable for cumulant-based 

modeling had been generated in relation to a NASA research grant, that focused on the 

reliability of components that are used in space technology. We think that the stochastic 

analysis of component reliability in military applications can also be relevant and usefiil to 

the Department of Defense. Optimizing maintenance schedules of military equipment can 

prevent critical system failure and improve system availability. 

The first papers in my literature research include the "Analysis of equipment availability 

under varying corrective maintenance models" by Cassady and lyoob. [1], and a paper by M. 

Kijima: "Some results for repairable systems with general repair" [2]. Reading these papers 

resulted in thinking about availability or reliability of systems. The initial model we 

formulate is a gearbox in which the rate of failure is dependent on the state of the individual 

variables in the gearbox. These variables could be the temperature, pressure, or the number 

of particles in the box. We assumed that these variables of the gearbox are in a state of no, 



light, moderate, or severe wear. We are not completely satisfied with our formulation and 

faresee some problems when applying the cumulative procedure to this model, which 

inspires me to step up the library research. 

I.J. Rehmert generates my interest in shock models after reading his dissertation: "Time 

dependent availability analysis for the Quasi-Renewal process". Each shock arriving to the 

system causes component failure that is a ftinction of the total accumulated damage from 

previous shocks. The components are monitored at discrete points in time, which can be 

modeled with a discrete aging process. 

This leads us to investigate compartmentalized wear models involving crack propagation. We 

formulate a model in which cracks initiate discretely according to a Poisson distribution, and 

propagate according to a continues non-linear ftinction. The damage at time t can be 

represented as an integral of an analytical function, the "crack growth expression". I tried 

viewing crack propagation as a deteriorating system, but once again encountered an 

expansion of the model that was unwanted at this point in time. In order for me to be able to 

construct an analytical and simulated model within the timeframe given I opted for a more 

simplistic model, which would stress the advantages of using cumulative derivation. This 

brought us right back at thinking about component reliability. 

We formulate a model in which a single component operates in an environment of non-fatal 

repairable shocks, or impacts. These shocks represent system stresses or other components 

failing in the system. The shocks will cause repairable and cumulative damage to the 

component. The arrival of shocks is according to a Poisson distribution. The failure of the 

component is a result of both the un-repaired or current and the cumulative shocks at time t. 

We can write an intensity ftmction corresponding to component failure that is a nonlinear 

ftinction of the current and cumulative number of shocks. We can now use the cumulant 

derivation method to obtain an approximation to the probability that the component is 

operational at time t. An extended explanation of the model described above can be found in 

the appendix. 

To great relief we finally formulate a model that seems to fit the scope of my research. 



The next step is the creation of numerical results based on our analytical model. Mathematica 

software, and a program for the Cumulant derivation procedure, which Dr. T.I. Matis has 

developed, helps us solve our partial differential equations. We define several intensity 

functions and evaluate the availability of the component at time t, letting t increase discretely 

from 0 to 50. The results are imported in excel to make a graphical comparison with the 

simulated results possible. 

We want to evaluate how well the approximation of the availability of the component is. A 

simulation in ProModel simulation software is built to compare the approximation to. The 

modeled system seems simple enough to simulate. In thinking about the exact timing of 

every event in the simulation however, I realized that discrete event simulation software is 

not always specifically designed to simulate analytical models. Debugging the simulation 

with the trace-fiinction is necessary to ensure that the simulation is operating exactly as stated 

in the model formulation. To obtain a 5% confidence interval on our simulation data, we 

calculate that around 40.000 replications are needed. The times of failure of the component 

are written to a text-file, that is imported in excel. [Appendix] 

In looking at the resulting graphs for the expected time of failure of the component we can 

conclude that the cumulative derivation method is fairly accurate. We also see that it's 

accuracy increases as the truncation level increases, which seems to be a logical observation. 

The mathematical tractability as the system size increases is this methods greatest strength. 

This semester is coming to a rapid close, and I regret not being able to explore the advantages 

this method has when we increase the size of the system. The goal to expand the model to 

phase-type distributions has also not been realized. I realize that knowledge is the most 

abundant resource in nature, and that there is still a lot of work to be done. I would like to 

thank everybody who has made it possible for me to be exposed to the practice of doing 

research and the field of stochastic modeling in particular. My interest is to continue as a 

graduate student in the field of Industrial Engineering, specifically in the areas of operations 

research and simulation modeling. Special thanks to Dr.T.I. Matis who challenged, inspired, 

and supported me throughout this entire experience. 



Library Research 

Cassady, C.R., lyoob, I.M., "Analysis of Equipment Availability under Varying Corrective 
Maintenance Models". Work Review (2002) 

In this paper, the authors present availability measures of repairable equipment. 
Different corrective maintenance models are compared and the effects of varying 
parameters of the models are examined. The effect of changing corrective maintenance 
models on equipment availability is analyzed. The point availability is the major measure 
of performance, which is illustrated in the paper by various graphics. Results are obtained 
using a simulation model created in Visual Basic, and a 95% confidence interval is 
obtained by multiple repetitions. The models of the impact of repair include Perfect Repair, 
Minimal Repair, Kijima Types Repair, and Quasi-Renewal Repair. The simulation model is 
developed to obtain functional approximations to the availability function for each of these 
models. This research does not provide any analytical solution methods, but it can be used 
as a tool when measuring the relative error of alternative analytical methods. 

Dieulle, Laurence, "Reliability of several component sets with inspections at random times" 
European Journal of Operational Research 139 (2002) 96-114 

This paper considers a random process representing a system of components with 
constant failure rates and subjected to inspections at times defining a renewal process. An 
analytical method for calculating the reliability function, its Laplace transform and the 
mean time to failure is given. These formulas are only computable if the Laplace transform 
of the inter-arrival law of the renewal process is explicit. The asymptotic behavior of the 
reliability and the failure rate of the system are studied. The reduced ability to model a 
variety of distributions, and the intractability when modeling large-scale systems however 
makes this study less applicable in reality. 

Kijima, M. "Some results for repairable systems with general repair" Journal of Applied 
Probability 26 (1989) 89-102 

In this paper Kijima develops general repair models for a repairable system by using 
the idea of the virtual age process of the system. Two models are constructed depending on 
how the repair affects the virtual age process. These models are then used to obtain an 
upper bound for the expected value of the survival function when a general repair is used. 
The introduction of the Virtual Aging Process is interesting especially considering the large 
number of references that have been made to this paper. Some knowledge of the survival 
function makes modeling maintenance policies easier, and the idea of virtual aging can 
greatly contribute to this endeavor. 

Lam, Y., Tony, H, K., "A general model for consecutive-k-out-of-n: F repairable system with 
exponential distribution and (k-l)-step Markov dependence." European Journal of 
Operational Research 129 (2001) 663-682 

In this paper, a general model for a repairable system in which the lifetime of a 
component depends on the number of consecutive failed components that precede the 



component. The failure and repair time are both exponentially distributed in this model. A 
transition density matrix is determined, and a general Markovian model is used to obtain 
some measures of performance such as the availability, the rate of failures and the 
reliability. The assumption is that a failed component after repair will be "as good as new". 
This publication has some general ideas that crossover to the other references presented 
here, and to my own field of research. The proposed methods however lack the ability to 
solve systems that show failure and repair times that are not exponentially distributed. It 
exemplifies that there is a serious need for analytical methods that can provide measures of 
performance for larger scale systems with non-exponentially distributed random variables. 

Matis, J.H., Kiffe, T.R., "Stochastic Population Models, a compartmental perspective" 
A classic book of Jacquez on compartmental analysis inspired this publication in 

which stochastic compartmental analysis is reviewed and generating fiinctions are used to 
obtain many of the results. The theoretical development of the methods used is found in 
Chapters three and nine, for all practical purposes I focused on chapter three. This chapter 
explains the use of moments and cumulants when describing single population stochastic 
models. A standard approach for solving probability functions known as the Kolmogorov 
differential equations is illustrated. Cumulant fiinctions are shown to be very useftil for 
finding a distributions cumulants by obtaining and solving partial differential equations for 
associated generating fimctions. An immigration death model is used to illustrate the 
theoretical development of the generating fiinction approach. The use of cumulant 
fiinctions presented in this analysis is applied in the arena of reliability by Matis and 
Feldman, as described above. I have extended these ideas to find practical application in 
reliability systems with the support of Dr. T.I.Matis. 

Matis, T.I., Feldman, R.M., "Using Cumulant Functions in Queueing Theory" Queueing 
Systems 40, (2002) 341-353 

This publication demonstrates a new procedure for obtaining measures of 
performance of state-dependent queueing networks. This procedure uses cumulant 
generating fimctions and relates these to the intensity fimctions in the network. The service 
rate is expressed as polynomial fiinction of the state of the system, from which a partial 
differential equation of the cumulative generating function is obtained. This partial 
differential equation then yields a set of ordinary differential equations, which are then 
solved to obtain the first and second moments of the system with Markovian arrival and 
service rates. The first and second moments of the random variables in the system provide 
transient information when describing the system. As the network increases in size this 
solution method remains tractable, in contrast to the method proposed by Rehmert in the 
dissertation reviewed above. Cumulant functions have previously been used by Matis and 
Kiffe to obtain measures of performance of ecological models, such as the spread of 
honeybees or muskrats. This cumulant derivation procedure is also used in the research of 
reliability systems subject to non-fatal shocks. 



Pham, H. Wang, H. "Imperfect maintenance" European Journal of Operational Research 94 
(1996)425-438 

The maintenance of deteriorating systems is often imperfect, as studied by using 
simulation in the first reference by Cassady and lyoob. Imperfect maintenance studies 
using mathematical models for estimating availability functions and reliability have 
undergone some breakthroughs that are discussed and summarized in this paper. Treatment 
methods for imperfect maintenance, such as the (p, q) and (p(t), q(t)) rules, the 
improvement factor method, virtual age method, shock model method, (D D) rule, are 
examined and explained. Preventative maintenance policies, such as age-dependent, 
periodic PM, failures limit policy, sequential PM policy, repair limit policy, and multi- 
component systems can indicate what model needs to be selected. Although the focus of 
this paper tends towards modeling maintenance policies to reduce cost, the underlying 
principals can be very useftil when thinking about reliability systems in a more general 
sense. 

Rehmert, I. J., "Time-Dependent Availability Analysis for the Quasi-Renewal Process." Diss. 
Virginia Polytechnic Institute and University (2000) 

This research is based upon the quasi-renewal process proposed by Wang and Pham 
which is an alternative to the widely studied imperfect repair model, the (p, q) model, 
proposed by Brown and Proschan. A quasi renewal process can realistically describe the 
behavior of repairable equipment. The framework provided in this dissertation allows for 
the description of the time-dependent behavior of tihis non-homogeneous process. Two 
equivalent expressions for the point availability of a system v^th operation intervals and 
repair intervals that deteriorate according to a quasi-renewal process are constructed. These 
expressions are used to provide upper and lower bounds on the approximated point 
availability. Laplace transforms are used to solve the resulting expressions. The quasi 
renewal function and the point availability function are found for exponential, normal, and 
gamma operating and repair intervals. It is necessary to truncate the expressions to invert to 
the time domain to obtain numerical results. The usefulness of this approach seems limited 
because it does not find exact expressions for all distributions, and the calculations seem to 
be intractable as the size of the system increases. 

Scarsini, M. Shaked, M. "On the value of an item subject to general repair or maintenance" 
European Journal of Operational Research, Vol.122 (2000) 625-637 

This paper introduces and studies finding a practical expression of the monetary value 
of an item. The model that is constructed takes the repair and the maintenance procedures 
that are applied to it during its lifetime. The number of repairs and the degree of the repair 
are taken into account when doing the calculations. The degree of the repair follows the 
ideas of virtual aging modeling as was presented earlier by Kijima in his virtual aging 
models. The uncertainty is introduced into the model by the distributions of the inter repair 
or inter maintenance periods. This paper shows how the virtual aging process can be used 
to model cost under repair and maintenance procedures. 



Sheu, S., Griffith, W.S., "Multivariate Age-Dependent Imperfect Repair" Naval Research 
Logistics, Vol. 38 (1991) 839-850 

This article considers models of systems whose components have dependent life 
lengths with specific multivariate distributions. Components are repaired according to a 
corrective maintenance scheme, meaning that components are repaired upon failure. Only 
two types of repair are considered in this paper: perfect repair, and imperfect repair. The 
study focuses on a model in which the nature of the repair is age dependent. The model 
uses the (p(t), q(t)) rule which was earlier described in this reference list in the publication 
by Wang. An expression for the cumulative hazard function is derived, which can be useful 
when describing reliability of systems. The paper however lacks any numerical examples 
that demonstrates finding the hazard function. 

Wang, H., "A survey of maintenance policies of deteriorating systems" European Journal of 
Operational Research 139 (2002) 469-489 

This survey summarizes, classifies, and compares various existing maintenance 
policies for both single-node and multi-node systems. All these models fall into categories 
such as: Age replacement policy, block replacement policy, periodic preventive 
maintenance policy, failure limit policy, sequential preventive maintenance policy, repair 
cost limit policy, repair time limit policy, repair number counting policy, reference time 
policy, mixed age policy, group maintenance policy, etc. The characteristics, advantages, 
and drawbacks for each kind of policy are addressed. Maintenance and replacement 
problems have been studied for the past several decades, and this invited review gives a 
clear overview of the models used. Wang's research has introduced the concept of "Virtual 
Age" when modeling Quasi-renewal or imperfect repair. 
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Environmeni Machine ISHoQse 

00. 00 

00.00 

Scenario 
Replication 
Simulation Time 

Normal Run 
999 of 999 
0.002319444444 hr 

LOCATIONS 

Location 
Name 

Envi ronment 
Machine 
Current 
Choose 
Write up 

Average 
Hour^ ranar-irv mlnH .. Seconds  Average  Maximum  current 
Hours capacity Entries Per Entry contents Contents contents 

Scheduled 

0.002 319444444 999999 
0.002319444444 999999 
0.002319444444 999999 
0.002319444444 999999 
0.002319444444 999999 

2 0.000000 0 
3 1.226667 0.440719 
2 1.650000 0.39521 
1 0.000000 0 
1 0.000000 0 

1 
3 
2 
1 
1 

0 
3 
1 
1 
1 

LOCATION STATES BY PERCENTAGE (Multiple Capacity) 

Location 
Ncune 

Scheduled 
Hours 

% 
Empty 

% 
Partially 
Occupied 

Environment 
Machine 
Current 
Choose 
Write up 

0.002319444444 100.00 0.00 
0.002319444444 64.91 35.09 
0.002319444444 64.91 35.09 
0.002319444444 100.00 0.00 
0.002319444444 100.00 0.00 

% 
Full 

0.00 
0.00 
0.00 
0.00 
0.00 

% 
Down 

0.00 
0.00 
0.00 
0.00 
0.00 

RESOURCES 

Resource 
Name Units 

Scheduled 
Hours 

Number 
of Times 

Used 

Average 
Seconds 

Per 
Usage %  util 

Repair.1 
Repai r.2 
Repai r 
Repai r 
Repai r 
Repai r 
Repai r 
Repai r 
Repai r 
Repai r.lO 

1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 
1 0.002319444444 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

2.930000 
0.370000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

35.09 
4.43 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 



shocks 3 2 a.nb 

$HistoryLength = 0; 

A := .8 

^3 := .005 

a := .005 

b := .005 

K[0, 0, 0][t]   :=0 

M[0, 0, 0] = 1; 

(M[i ] [t] /; Plus®® {i) fc 4)  := 0 

(K[i ] [t] /; Plus®® {i} 2: 4)  :=0 

3 3 3 

'^"^^ZZZ"^^' k, 1] * 

1=0    k=0    jsO 

eJ    ^JC   £\\. 

j ! k! 1 1 

3 3 3 

'°"==ZZZ^^^' 
1=0    lc=0    j=0 

MGF : = Ejqj [CGF] 

k, 1][t] * 
eJ   QIC y>l 

j!k!1! 

derivl[i_] 

deriv2 [i_] 

deriv3[i   ] 

= D[MGF, {©1, i}] /. {e^CGF -♦mgfl} 

= D[MGF, {©2, i}] /. {e^CGF -ungfl) 

= D[MGF,  {©3, i}] /.  {e'^CGF -♦ingfl} 

g = D[MGF,  {t, 1}]  /.  {e^CGF -. mgf 1} ; 

h = A* 
(-©3)^ 

'3 ^ /    3 
Z(©l)^                                              V"     (-®3 
     * MGF * flz*      }      

j !                                   Z_J      j ! 
* (deriv3[l])   + a* 

/   3 
(-©3)' 

(deriv3[l] * derivl [1]) +b* 
'      ■       -,1^ (-©3)- Z^ 

3=1 

* (derivB [1] * derivl [2]) / . {e^ CGF -> mgf 1} , 

<< momcum.m 

UptoOrder[nVar_, ord_] := 

RestlSelect[Distribute[Tal)le[Range[0, ord], {nVar}], List], (Plus @@ # ^ ord) £] ] ; 

orderliistl = UptoOrder [3, 3] ; 

relationsmod = 

MoinCumConvert[#, ForMomentQ -» "Y" , CenteredQ ^ "N" , MomentSymbol -» M, CumulantSymbol -> K] & /@ 

orderliistl; 

relations : = relationsmod /. {K[i ] -» K[i] [t] } 

momcumrule = relations / . {Equal -*Rule}; 

w 
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®<ll[i_' 3_' K_] :=h/- {ei-» Evaluate [itSi] , 62-> Evaluate[ j * 62] , 63-» Evaluate [k * 63 ]} ; 
duinl[i_, j_, k_] := Coefficient [Evaluate [ 

eql[Sign[i] , Sign[j] , Sign[k]]] , e{el e\\ I. momcvmunile; 

eq2[i_, j_, k_] :=g/. {61-» Evaluate [i *ei] , 02-♦ Evaluate[j * 62] , 63-♦ Evaluate [k * 63 ]) ; 
duni2[i_, j_, k_] := Coefficient [Evaluate [ 

eq2 [Sign[i] , Sign[ j] , Sign[k] ] ] , ©i 6^ 63] / . momcumrule; 

bilbo = MapThread[dunil, Transpose [orderListl] ] ; 

bilbo2 = MapThread [duiii2, Transpose [orderListl] ] ; 

Shitake = Table [bilbo2[[i]] == bilbo [ [i] ] , {i, 1, 19}]; 

Bonzai = Table[ 

K[Part [orderListl, i, 1] , Part [orderListl, i, 2] , Part [orderListl, i, 3]] ' [t] , {i, 1, 19}] ; 

neweqns = Solve[Shitake, Bonzai]; 

neweqmod = neweqns / . {Rule -* Equal} ; 

Samuri = Table [K [Part [orderListl, i, 1] , Part [orderListl, i, 2] , Part [orderListl, i, 3]] [0] = 0, 
{i, 1, 19}]; 

Monkey = ReplacePart[Samuri, K[0, 0, 1] [0] == 1, 1] ; 

Joy = Join[First[neweqmod], Monkey]; 

Pokemon = 

Table [K [Part [orderListl, i, 1], Part [orderListl, i, 2], Part [orderListl, i, 3]], (i, 1, 19}]; 

rs =NDSolve[Joy, Pokemon, {t, 0, 50}, MaxSteps-» 10000] 

{{K[0, 0, 1] 
K[0, 0, 2] 
K[0, 0, 3] 
K[0, 1, 0] 
K[0, 1, 1] 
K[0, 1, 2] 
K[0, 2, 0] 
K[0, 2, 1] 
K[0, 3, 0] 
K[l, 0, 0] 
K[l, 0, 1] 
K[l, 0, 2] 
K[l, 1, 0] 
K[l, 1, 1] 
K[l, 2, 0] 
K[2, 0, 0] 
K[2, 0, 1] 
K[2, 1, 0] 
K[3, 0, 0] 

-»Int6rpolatingFunction[{{0., 50. } 
-*InterpolatingFunction[{ {0., 50. } 
^InterpolatingFunction[{{0., 50.) 
->InterpolatingFunction[{{0. , 50. ) 
H> InterpolatingFunction[{ {0., 50. } 
->InterpolatingFunction[{{0., 50.} 
^InterpolatingFimction[{ {0., 50.) 
->InterpolatingFunction[{{0. , 50. } 

->InterpolatingFunction[{{0., 50.) 

-♦InterpolatingFunction[{{0., 50.} 
-*InterpolatingFunction[{{0., 50.} 

->InterpolatingFunction[{{0., 50.} 
->InterpolatingFunction[{{0., 50.} 

->InterpolatingFunction[{{0. , 50.} 
-»InterpolatingFunction[{{0. , 50.) 

^InterpolatingFunction[{{0., 50.} 
->InterpolatingFunction[{{0., 50.} 

-> InterpolatingFiinction[{{0., 50.} 

^InterpolatingFunction[{{0., 50.} 

0], 
0] 
<>]- 

<>]- 
0], 
0], 
<>]- 

0], 
0], 
0], 
0], 
0], 
0], 
0] 
0], 
0], 
0], 
0] 
<>]}} 

\x 
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K[0, 0, 1][2] /. rs 
K[0, 0, 1] 14] /. rs 
K[0, 0, 1] [6] /. rs 
K[0, 0, 1] [8] /. rs 

K[0, 0, 1] [10] /. rs 
K[0, 0, 1] [12] /. rs 
K[0, 0, 1] [14] /. rs 
K[0, 0, 1] [16] /. rs 
K[0, 0, 1] [18] /. rs 

K[0, 0, 1] [20] /. rs 
K[0, 0, 1][22] /. rs 
K[0, 0, 1][24] /. rs 
K[0, 0, 1] [26] /. rs 

Plot[Evaluate[{K[l, 0, 0][t]} /.rs],  (t, 0,50}, 
PlotRange -♦ {0, 10} , AxesLabel -» {" t" , "E [Xi (t) ] " } ] 

Plot [Evaluate [(K[0, 1, 0] [t] } /. rs],  {t, 0, 50}, 
PlotRange -» {0, 5} , AxesLabel -* { " t" , "E [X2 (t) ] " } ] 

Plot [Evaluate [{K[0, 0, l][t]} /. rs] ,  (t, 0, 50}, 
PlotRange -» (0, 1} , AxesLabel -♦ ("t" , "E[X3 (t) ] "}] 

Plot [Evaluate [{K [2, 0, 0][t]} /. rs] ,  {t, 0, 50}, 
PlotRange -» {0, 10} , AxesLabel -» { " t" , " Var [Xi (t) ] " } ] 

Plot [Evaluate [{K[0, 2, 0][t]} /. rs] ,  {t, 0, 50}, 
PlotRange^ {0, 5}, AxesLabel-* {"t", "Var [X2 (t) ] " } ] 

{0.966056} 

{0.858759} 

{0.667377} 

{0.430791} 

{0.219442} 

{0.0838102} 

{0.0228014} 

{0.00419834} 
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(*  <<CtunPlot.m *) 
(*Nat=6; 
Times40,• 
Z=MapThread[K,IdentityMatrix[Nat]]; 
Z=Z/.{K[q_]->KIq] [t] } 

For[i=l,i<Nat+l,Plot[Evaluate[Take[Z,{i,i}]/.rs],{t,0,Time}];i++]*) 
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Abstract 

The reliability modeling of numerous physical systems is critical in the prevention of system failure. In 
many instances, the failure rate of system components is a function of non-fatal shocks or stresses to the 
system that occur at discrete points in time. These shocks are assumed to be identical and reparable, and 
they impact the failure rate of the system in a non-linear fashion via the cumulative and current nuinber of 
shocks. In this paper, we demonstrate the apphcation of the cumulant derivation procedure to this 
reliability system in a Markovian environment This approach utiUzes a truncated cumulant generating 
function to generate a set of ordinary differential equations whose numerical solution approximates the 
reliability function. These approximations are obtained under various truncation levels whereby this 
approach is shown to be tractable for large systems. 

1. Introduction 
In this paper, we consider a single component operatmg in an environment of non-fatal reparable 

shocks. These shocks may represent a wide variety of events, including the failure of other system 
components, instantaneous system stresses, or the states of a compartmentalized wear process. The shocks 
are assumed to be homogenous and their arrival is governed by a stationary Poisson process. They are 
repaired according to an exponentially distributed infinite server repair process that begins immediately 
upon shock arrival whose rate is a function of the total number of cumulative shocks. The failure of the 
component is Poisson distributed with the rate being a function of both the current number of unrepaired 
shocks and the total number of shocks that have ever been received by the system. In other words, each 
shock has both an immediate reparable effect and a permanent weakening effect on the system. Let X, (t) 
and X2(t) be integer-valued random variables taking values in [0, l,..,oo] that denote the cumulative and 
current number of shocks at time t respectively. Let X^it) be an integer-valued random variable taking 
values [0,1] that represents the state of the component at time t, where X3(t)=l denotes a functioning 
component and Xsit) =0 denotes a failed component. All possible unit changes that may occur in the state 
of the system in a small interval of time are contained in the set B and the corresponding state-dependent 
intensity (rate) functions will be denoted as f(bi,b2,b3)(X,,X2,X3) for (bi,b2,b3)eB . This system is graphically 
depicted in Figure 1. 

We assume that initially the component is operational, X3(0)=l, and no shocks have been received 
Xi(0)=X2(0)=0. The intensity function corresponding to component failure, f(o o -i)PCi,X2,X3), is specified 
as a nonlinear fiinction of the cumulative and current number of shocks, Xi(t) and Xj©, and represents the 
damage process previously described. Our primary interest is in approximating the reliability function of 
the component, i.e. the expected value of XsCt), for all t > 0 using truncated cumulant generating functions. 
These approximations are compared to simulated values for several systems under various intensity 
fimction specifications and truncation levels. 

(^ 



\^,^.0)0^^<^2'^3) 
'(0,0,-1)(^1'X2'^3) 

n0,-1,0)(^'^2'^3) 

Figure 1: Graphical Representation of Reliability System 

2. Cumulant Derivation Procedures 
Let X(t)=(Xi (t),X2(t)„X3(t),) be a random vector of the system state at time t. It follows that X(t) 

forms a Markov process with an absoibing state that denotes component failure. While such a process may 
be solved exacUy usmg convention means, i.e. Kolomogorov Equations, such an approach is intractable for 
l^ge systems or those with an infmite state space. As an alternative, the cumulants of the state-distribution 
of X(t) may be approxmiated using a truncated generating functions. These cumulant measures correspond 
du-ecUy to the common measure of mean, variance, covariance, skewness, etc. of the state distribution 
Previous investigations into the nature of cumulant functions by KendaU[l][2] and Smith[3] reveal several 
mteresting properties. In particular, the cumulants of a multivariate normal distribution greater than the 
second order are nuU, and the marginal cumulants of a Poisson distribution are equal  This and other 
properties of cumulants are exploited by this approximation procedure. This section contains only a brief 
ovemew of the cumulant derivation procedure based on the fiill development found in Matis and Feldman 
[4] [5], Matis [6], and Matis and Kiffe [7]. 

Let A/(6'i,02A>O be the multivariate moment generation function of X(t) defined in the usual 

manner, and let K{0^ A^^s^O be the multivariate cumulant generating function defined as 

<i,,..,o„eW* 

%,...,«„<'>", 
a,       a 

a^\...a^\ 

0 " n 

where A^ denoted the set of non-negative integers. The joint cumulants A:,^ ^^ (t) of the system; 

defined as fiinctions of the individual moments through the relationship betlveen the generating fimctions, 
I are 

K(0^,0r^,0^,t) =ln{M(0^,02,0^,t)}. (1) 

The moment generating fimction of X(t) related to the polynomial intensity fimctions of the 
system through a partial differential equatioa This relationship was investigated by Bartlett[81 and 
Bailey[9] and thereby dubbed the "Random Variable Technique". While the specification of the partial 
differential equation of the moment generating is almost immediate, finding a solution is usually 
computationally mtiactable. The cumulant derivation procedure involves substituting a ttuncated cumulant 
generating fimction for the moment generating fimction into the partial differential equation according to 
Eq. (1). A set of approximating ordinaiy differential equations is obtained upon expanding tiie partial 
denvatives, substitiiting Taylor series expansions for the exponential terms, and equating tiie coefficients of 
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unique combinations of the 0, 's. The accuracy of these approximations is dependent upon the 

specification and order of the polynomial intensity flmctions and the level of cumulant truncation Previous 
investigations, Matis[6], have shown that truncation at the 3'' order is generaUy sufficient for "goocT 
approximations of the first order cumulants (mean), while that at the 4^ order is sufficiem for the marginal 
second order cumulants (vanance). Further developments of the cumulant derivation procedure will be 
descnbed m a reliabihty context. ^^umc wui oe 

3. Cumulant-Based Analysis of the Non-Fatal Shock Process 
In this section, we demonstrate the application of cumulant-based procedures to the non-fatal 

shock process descnbed in the introduction of this paper, see Figure 1. This will be shown for one instance 
of the problem under a muque set of intensity flmctions. Let the intensity fiinction of the system be defined 

f(l,l,0)(Xl.X2,X3) = X 

^0,-1.0)(X,,X2,X3) = H2Xi^(t)X2(t) 

^0.0..1)(Xi,X2,X3) = H3(X3(t)+Xi(t)X2\t) X3(t)) 

where 1=10 1^2 =.05 and ^3 =.025. In other words, the rate of repair is dependent upon the cumulative 
number of shocks and the failure rate of the component is dependent on both the current and cumulative 

wSnn°if vm   ' f     r ^ T''S"^ "'™''"- ^ P^'^' differential equation of the momem generating 
fimction of X(t) is found usmg the "Random Variable Technique" as B      <^^^& 

a< '^  -rz '■/"T^ —=—~  dt ^\ ' ^ deldO^ 

(-^3-1) 

de^e^de^   , 

(2) 

Anm  order truncated cumulant generating fiinction ^^(^i,^2'^3'^> and a Taylor series expansion of 
the exponential terms is substituted into Eq.(2) yielding the expression 

g^K„(0^,e^,0„t) 

dt 
= A (^k^^l) 

1=1 
/! 

ofe^^C^.^j.^.O M 

'^ 
^(-^3) 

J d0. ''i^-^< 
Q^gK„(8,.e„e,.t) 

  + 

de^de^ 

dO^ dO^de^dO^ j 

(3) 

ExpMiding the partial derivatives, converting moments to cumulants (Smith[3]), and equating tiie 
coefficients of like polynomial terms on the right and left hand side of Eq. (3) yields a closed set of 
/',   3 '~\ 

- fj (/ +m) -I ordinary differential equations. The size of tiie generated sets of ordinary differential 

equation does not permit their demonsti-ation in tiiis paper, yet the number of such equation is 9 under a 
tiuncation level of m=2,19 mider m=3, and 34 under m=4. Approximations to the low order cumulants are 
found upon numencaUy solving fliese sets of ordinary differential equations. 

4. Numerical Results 

The^sets of ordinary differential equations generated fl-om Eq. (3) were numericaUy solved using the 
matiiematical software Matiiematica® mider the tiimcation levels m=2. 3, 4. These were then compared to 
simulated pomt estimates based on 10,000 replications using the software ProModel®  The initial 
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conditions for tlie process have all cumulants set equal to zero except for ko,o,i(0), wliich corresponds 
directly to the reliability of the component at time 0, is set to one. As previously noted, truncating the 
cumulants at m=2 implies that the state-distribution is normally distributed. Increasing tlie level of 
truncation to m=3 brings in skewness and m=\ brings in kurtosis, in addition to tlie effects of the higher- 
order cross cumulants. Tlie cumulant approximations for the reliability of the component, i.e. 
R(t)=E[X3(t)], is given in Figure 2. 

30 40 50 

Figure 2: Graph of R(t) = E[X3(t)] for Varying Truncation Levels 

The approximation of R(t)=E[X3(t)] is relatively tight between all values of m and close to the simulated 
value. This result is promising as the reliability function for systems subject to similar non-fatal shock 
processes may be well approximated using small values of w. As such, this result provides evidence that 
approach may be extended to similar large-scale networks in a computationally efficient manner. Though 
not of primary interest in this paper, the differences in approximations of the variance of the current 
number of shocks, VarpC2(t)], between truncation levels is noteworthy and is given in Figure 3. 

Var[Xj(t)] 
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n . ; 
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Figure 3: Graph of Var[X2(t)] for Varying Truncation Levels 
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The specified model was then evaluated under the parameter specification X=. 10, H2 =05, and H3 
=.005 yielding the graph in Figure 4. Comparing the similarity of the cumulant approximations for various 
truncation levels in both Figures 2 and 4 provides evidence that the precision of the reliability function 
approximations do not significantly vary with the rate of system failure. Comparing these approximations 
to simulations, however, provides evidence that the accuracy of the approximations increases as the rate of 
system failure decreases. 

Figure 4: Graph of R(t) = E[X3(t)] for Varying Truncation Levels 

The polynomial intensity fimction of the model were then redefined as 

^l,l,0)(Xi,X2,X3) = % 

f^0,-m(XuX2,X3) = H2X,'(t)X2(t) 

^0.0.-I)(X,,X2,X3) = H3(X3(t)+Xi'(t)X2'(t) X3(t)) 

increasing the dependency of the failure and repair rates on the state of the network. The graph of the 
reliability function is given in Figure 5. This deviation of the cumulant approximation under m=2 provides 
evidence that 2""^ order truncation is not sufficient for approximating the cimiulants of systems that are 
strongly state-dependent. This observed result is consistent with the previously stated properties of 
cumulants, i.e. truncation at m=2 assumes a multivariate normal state distribution. This normal assumption 
clearly does not hold for systems with strong state-dependency in which skewness is clearly present. 
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Figure 5: Graph of R(t) = E[X3(t)] for Varying Truncation Levels 

5. Conclusions 
In this paper, we have shown the application of cumulant derivation procedures to a reliability 

system subject to non-fatal shocks, i.e. a state-dependent reliability system. The effect of various 
truncation levels on the accuracy of the reliability function approximation was demonstrated for various 
parameters and intensity functions. The similarities between these approximations provide insight into the 
expandabiUty of the approach to large, complex systems. A copy of the Mathematica® computational 
routines used to set up and solve the approximating set of ordinary differential equations may be obtained 
from the authors upon request. 
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M iS^^" 'CStochastic 

Reliability Systems Subject to 
Non-Fatal Shocks 
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Center for Stochastic Modehng 
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Problem Definitibn 
*3S0chasf.c 

• Single imit;s^steihopefatiiig in non-fatal shock ,  J 
''envlroMient t     *   .*" \     t        ' <      .  '•- 

• ,Sho)3ks ar^1iomogenous"with ilnit<larhage 
• Each shock causes two types'of system damage 

~   -«Reparab|e damage - transient 'v^eakening 

- irreparable damage -■permaneht ^fakening '' 

' The rate of sy^em failure is a non-linear function of 
the current ana Cumulative level «f damage to the 

-.system'. .-,.-, f    ",     '  '      '   . i '-•" 
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Model 
yfCemerty 

"^ ^hchastic 

• Xj(t) = Cumulative damage 
• X2(t) = Current damage 
• X3(t) = Component Status (1-working, 0-faiied) 
• Shocks are Poisson distributed with intensity 
,    fl,l,p(Xi,X2^X3) 
• Repairs are Exponentially distributed with intensity 

^0,-1,0(^1,^2, ^3) .,    - >,-      '■ 
• System Failure is Exponentially distributed with 

intensity fo,o,-Ai7X2^'X3) ; 
• Objective: Find the reliability function R(t) = 

Pr(Tfaiiure^t) = B[X3(t)] for the system 

Graphical Representation 
t     ■* % 

i    •'    -'. 

f«.fl{Xl,X2,X3r 

Xl(t) 

X2(t) 

1* 

X3(t) 

Shchmtic 
.^rfAodeUng 

\'j? 

•U «(Xl.X2,X3) 

t(o-,.^'^1,^,X3)    ' ■ 

r»'   '   •> 

.    ,\^ 

iS 



Example 

. f,,,,i(X, X2X3) = A 

• f„_o,,(X, Xj X3) = M3X3(1+X,X/) 

with the numerical parameters: 

A=040, M2=0-.05, |i3=0.005 

l-Shchastic 

V,>. 

Simulated Output 
, «35z>cte«V 
^/f/loddmg 

..Stochastic event simulation using ProModel®      ;   • 
R. Y. '^ Xi(t), X2(t), ^(t) are ;nodes in the simulation 

-Tiiile;qntirfailure, i.e. X3(t)=0, is recorded 
PpiAt estimate o'ffijXstt)] is based on lp.,000       - 
replications ' .       *      ^f.- 
- Approx. 300,000 replications are needed to achieve a 95% 

confidence interval oh E[X3(t)] with a half width of .05 

Unique seed values weje assigned for each replication 
I'oint estimates are graphically represented as a ._ 
Teliability function'    -   '=   ■/    ',.''^^ ■'       '   :   .   -^ 
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>*""'«* 
fM 

E[X3(t)] 
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Graph of R(t) 
/•jCemerf>, ' 
'Qiochastk 

\^ 

r— Sim I 

0      10     20     30     40     50     60     70     80     90    100 

j.*'".©. 

^ ^n.,-***^. X = 

DeterministiQ Solittion 
■^A/iodeUng 

'I- 

%' ' '^^.2-'<^'-M(iSili2 

A        ** 

-*a/1 ■^        4 

2x 

''dt X3 -.-.0.005J3(l>XiA^2) 

25 



PlotofR(t) 
Zit'eniern, ; :. 

^jMofidirig 
- ,r< 

E[X3(t)] 1 ' — Det 
— Sim 

• 

0.9 - 

0.8 - 

0.7 

0.6- 

0.5 ■ 
0.4 ■ 
0.3 - 

0.2 ■ 
0.1 

"■"^-- 

t 

W ■'■''■ 

0      10     20     30     40     50     60     70     80     90    100 

~ 

CumulantTBased Solutions 
^todding 

• Find a partial,differentiai equation of the 
^ cumuMnt geperati^^ fun^ion oF|he \. 

Hiii!fcr#eciistriWtio,noi%^X^^Xjviathe ^ , 
'^Random Variable f |chnique"%artl6tt (i 9$5). 

• PDE is ilpn-linear - hard to ioiye directly ^. 
• As aA approxiiAatiqn, truncate cumulants and 

equat^ terms bf the pdeto form a closed set of 
ordinary vdiffcr^ntial equations. •    ^ 

2^ 



Truncation of Cufnulants above. 
2"^ order (m=2) 

• Truncation above m=2 is equivalent to 
assuming a multivariate normal state 
distribution for XiX2,X3 ,     ' 

• This generates a set of 9 differential equations 
describing E[Xi], VarfXj] and Cov[Xi,Xj] 

"ibenteribr 
Jtochastic 
wdeling 

m 

E[X3{t)] 

> 

PlotpfR(t) 
Snterf. 
mcmsttc 

-Det 
-m = 2 
-Sim 

10     20     30     40     50     60     70     80     90    100 



Truncation Level ni=3 
ZKienterti, 

^'tochastic 

Truncation above the 3^^ order assumes the 
multivariate state distribution is fully specified 
by the mean, variance, and skewness of X, Xo 
X3 (arid all cross measures below 3'"'^ order) 
This generates a set of 19 ODE's 
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Truncation Level m=4 
,XMchastic. 

* Truncation above the 4'^'* order assumes the 
multivariate state distribution is fully specified 
by the mean, variance, skewness, and kurtosis 

. of Xj X2 X3 (and all cross measures below 4'''^ 
order) 

• This generates a set of 34 ODE's 

.'                     '''^      ■^ PlotofR(t) 
- 

n 
^ 

"Stochastic 
mtkling 

i 

* 
E[X3(t)]  Sim 

 Det 
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m^ 
Example - Increased 

Failure Rate 
• fi,i,o(Xi,X2^X3) = A 

• fo,-l,Q('^l,'^2,^3)^ M2X1   X2 

• fo,0,-l(X,X2X3) = |J3X3(l+X,X22) 

with the numerical parameters: 

Gtochastic 
yModding 

f 

1 •   i ■    / 

Plot of R(t) ; 

EIX 
1 - 

0.8 -- 

06 

0.4 - 

0.2- 

3(t)] 

""-^ 

1 

—- m = 2 
-  -   m = 3 
 m = 4 
 Sim 
• Det 

0 10             20             30             40              50 

'     ..7. %,         , 

'f 
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""'• Example - Modified 
State-Dependency 

• fi,i,o(Xi,X2^X3) = A 

• fo,-l,o(Xi,X2^X3) = P2Xi   X2 
• fo,o,-l(X,X2X3) = M3X3(l+X,2X23) 

with the numerical parameters: 

A=oao, |j2=o.05, |i3%o.oo5 ; 

i Stochastic 

r" 

:% 
< 

1'              *'                                      '    ■ 

PlotofJl(t) 

^^nterfr 

E[X 

1 - 

0.8- 

0.6 • 

0.4- 

0.2 ■ 

»(t)] 

""^•^ 

 m = 2 

 m = 3 
 m = 4 
 Sim 
 Determin 

t 
0 10              20              30              40              50 

;t 
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Conclusion 
'.■^fCenter t, 
"^Stochastic 

Cumulant approximations are quick, efficient, 
and accurate 
Further investigations: 
- Quantifying the effect of specifying various 

underfying state distributions on approximation 
accuracy ' 

- Extension of model to networks 

Questions ?? 
"^^fnterft 

Qhchastic 

■   ill 

t' ' I'imot^Jl^M^iis, PhB ■' |-4' 
■*' ^tmalsl u.^4u 

•*4 

i^Center for Stochastic Modeling 
htip://ejigr,nriisu.^u/~<jsm 

NMSU Inffigtrial En^eering 
-httpf^/Mgr.fim^u.edu/~ie   ^ 
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